a2 United States Patent

Huang et al.

US009069785B2

(54)
(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

STREAM LOCALITY DELTA COMPRESSION
Applicant: EMC Corporation, Hopkinton, MA
(US)

Inventors: Mark Huang, Seattle, WA (US); Philip
Shilane, Morrisville, PA (US); Grant
Wallace, Ewing, NJ (US); Nitin Garg,
Mountain View, CA (US); Edward K.
Lee, San Jose, CA (US); Ming
Benjamin Zhu, Austin, TX (US); Kai
Li, Seattle, WA (US)

Assignee: EMC Corporation, Hopkinton, MA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 109 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/764,358

Filed: Feb. 11, 2013

Prior Publication Data
US 2013/0232125 Al Sep. 5, 2013

Related U.S. Application Data

Continuation of application No. 12/291,989, filed on
Nov. 14, 2008, now Pat. No. 8,447,740.

Int. Cl1.

GO6F 17/00 (2006.01)

GO6F 17/30 (2006.01)
700

(10) Patent No.: US 9,069,785 B2
(45) Date of Patent: *Jun. 30, 2015

(52) US.CL
CPC ... GO6F 17/30156 (2013.01); GOG6F 17/30162

(2013.01)

(58) Field of Classification Search

None

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,814,149 B1* 10/2010 Stringham ... 709/203
8,832,034 B1* 9/2014 Ramarao 707/664
2004/0174276 Al 9/2004 McCanne et al.
2008/0013830 Al* 1/2008 Pattersonetal. ... 382/173
2009/0204636 Al* 82009 Lietal. .. 707/103Y
2009/0228599 Al* 9/2009 Anglinetal. ... 709/231
2009/0300321 Al* 12/2009 Balachandranetal. ... 711/216
2010/0031086 Al* 2/2010 Leppardcccooovirninnn 714/15
OTHER PUBLICATIONS

Jain et al. “TAPER: Tiered Approach for Eliminating Redundancy in
Replica Synchronization, FAST” 05: 4th USENIX Conference on
File and Storage Technologies, pp. 281-294, Dec. 31, 2005.

* cited by examiner

Primary Examiner — Hung Le
(74) Attorney, Agent, or Firm — Van Pelt, Yi & James LLP
(57) ABSTRACT

Stream locality delta compression is disclosed. A previous
stream indicated locale of data segments is selected. A first
data segment is then determined to be similar to a data seg-
ment in the stream indicated locale.

24 Claims, 12 Drawing Sheets

702

eNeW Data: BAFLSDIEDAAIFUGVYWMXPUVBU

704

706

eSimilar Data: AAFLSDIVIAAIFUGVYWMBSDUVBU

Encoded(l\l;w Data: ref 22 B ref c2-7 EDref ¢10-19 XPref c23-26
708 710 712 714 716 718 720 722

U.S. Patent Jun. 30, 2015 Sheet 1 of 12 US 9,069,785 B2

Client

102/\//@
106/\
A 108

100 e

Storage System

Deduplication System

ID Index
r\
116/ \/

Network

Delta Compression
System

Sketch
System

\
) <

1\

| 110/\@

v
/\/104

Client

112

Fig. 1

U.S. Patent Jun. 30, 2015 Sheet 2 of 12 US 9,069,785 B2

200 202 204 206 208
S 2 2 2 C
210/\/
.

Fig. 2

U.S. Patent Jun. 30, 2015 Sheet 3 of 12 US 9,069,785 B2
300 302
Data ~
Structure
304
Data Metadata
Segment /\/308
M\
306

Fig. 3

U.S. Patent Jun. 30, 2015 Sheet 4 of 12 US 9,069,785 B2

Network Interface

400 /Z/

l

Data Segment ID
Generator

402 /Z/

l 406
Deduplication ID Index ~
Filter

L~

Delta
Compression
System Interface

408 /Z/

Fig. 4

U.S. Patent Jun. 30, 2015 Sheet 5 of 12 US 9,069,785 B2

500 502 504
Data ID ~ ID Index o~
Segment >

Data Storage / /\/506 500

Container / 508
\ Metadata Cache

Data Metadata

Segment —~— ID Cache /\/524

510 512

Data Metadata
Segment =

/
—
526
514 516 / Sketch Cache

Data Metadata %
Segment /1

518 520

Fig. 5

U.S. Patent Jun. 30, 2015 Sheet 6 of 12 US 9,069,785 B2

Deduplication
600 /Z/System Interface

l

Data Segment
Sketch Generator

602 /2/

|

Delta Compressor Sketch System™

Storage System

Fig. 6

U.S. Patent Jun. 30, 2015 Sheet 7 of 12 US 9,069,785 B2

700 702

eNew Data: BAFLSDIEDAAIFUGVYWMXPUVBU
704 706

8Similar Data: AAFLSDIVIAAIFUGVYWMBSDUVBU

N

Encodedél\l)ew Data: ref 22 B ref_c2-7 EDref_c10-19 XPref_c23-26
708 (077 12 714 716 718 720 722

Fig. 7

U.S. Patent Jun. 30, 2015 Sheet 8 of 12 US 9,069,785 B2
Receive D ‘
| Receive Data Segment | 802
| Compute Data Segment ID' |
806
o~

Is Data
Segment ID in
ID Index?

Yes

Compute Data Segment Sketch|

Is
Data Segment
Sketch in Sketch
Cache?

[Locate Similar Data Segment'|

=

6

N

Select Stream Indicated
Locale of Data Segments

v

Return Data
Segment ID

808

1%

0

End
814

Store Data Segment,
Return Data Segment ID

End

818
| Compute Data Segment Encoding ’ﬂ/

Is Encoding
Smaller than Data
Segment?

| Store Data Segment Encoding |

!

Return Data Segment ID and
Similar Data Segment ID

End

Fig. 8

Store Data Segment,
Return Data Segment ID

End

826

U.S. Patent Jun. 30, 2015 Sheet 9 of 12 US 9,069,785 B2

Is Metadata No

Cache Full?

902

“Remove Previously Inserted Group
of Metadata From Metadata Cache

I

Add Data Segment Locality
/L/ To Metadata Cache

904

End

Fig. 9

U.S. Patent Jun. 30, 2015 Sheet 10 of 12 US 9,069,785 B2

1(}0@1 Originator System

10086
,7

Delta
Compression
System

Network

1004
7

Replica or Destination
System
1008
/
Delta
Compression
System

FiG. 10

U.S. Patent Jun. 30, 2015 Sheet 11 of 12 US 9,069,785 B2
N
| start |
1100»7 v
Select Data Segment on
Originator for Replication
1102»7 v
~ Transmit Data Segment 1D
from Criginator to Repiica
& 1106
1104 T T :
= Iz Data Segment D in Select Stream Locale
. ReplicalDlndex? of Data Segments
T e 1108 v
110 /| Replica Stores Data
Originator Transmits Data Segment 1D
Segment Sketch v
¢ | End |
1“2/7 //////ES Daié\\\\\“\\\\\\\ 1114,
Segmgn‘i Sketch in e Originator Transmits —
. Replicaskeich 0 U bata Segment to Repica
T Cache? 9 b
v 1116,
- Yes . £
118 l Replica Stores Data —
TReplica Sends Segment ID for Segment
Similar Segment to Originator ¢
¢ . End
11291 Does \
< Originator Have Segment >—
) i ves —Referenced by ID? No FIG. 11A

U.S. Patent

1122/7

Jun. 30, 2015

Sheet 12 of 12

{

Originator Encodes
Segment Relative to
Referenced Segment

'

1124/2

Originator Transmits
Encoded Segment
to Replica

1126/2

'

Replica Decodes and
Stores Data Segment

End

Fi. 118

US 9,069,785 B2

US 9,069,785 B2

1
STREAM LOCALITY DELTA COMPRESSION

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority to U.S. Provisional patent
application Ser. No. 12/291,989, entitled STREAM LOCAL.-
ITY DELTA COMPRESSION filed Nov. 14, 2008 which is
incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

Enterprises as well as individuals are becoming increas-
ingly dependent on computers. As more and more data are
generated, the need for efficient and reliable data backup
storage systems is increasing. There are a variety of systems
in existence today, utilizing both local and network storage
for backup. Some of these storage systems use data segmen-
tation and deduplication to more efficiently store the data.
Deduplicating backup systems break an incoming data
stream into a series of data segments and test the system for
the presence of each data segment before storing it, in order to
avoid storing it multiple times. Some deduplicating backup
systems can achieve high data compression factors of 10 to 50
or more. However, for a large enterprise system, a backup
system compressed by deduplication can still be so large as to
be cumbersome.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a block diagram illustrating a system for delta
compression after identity deduplication.

FIG. 2 is a block diagram illustrating an embodiment of a
segment deduplication data storage system.

FIG. 3 is a block diagram illustrating an embodiment of
data segmentation and storage.

FIG. 4 is a block diagram illustrating an embodiment of a
deduplication system.

FIG. 5 is a block diagram illustrating an embodiment of a
deduplication system with stream locality caching.

FIG. 6 is a block diagram illustrating an embodiment of a
delta compression system.

FIG. 7 is a diagram illustrating an embodiment of delta
compression.

FIG. 8 is a flow diagram illustrating an embodiment of a
process for stream locality delta compression.

FIG. 9 is a flow diagram illustrating an embodiment of a
process for selecting a stream indicated locale of data seg-
ments.

FIG. 10 is a block diagram illustrating an embodiment of a
system for transmitting or replicating segments using stream
locality based delta compression.

FIGS. 11A and 11B are flow diagrams each illustrating an
embodiment of a process for replicating a segment using
stream locality based delta compression.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composition
of matter; a computer program product embodied on a com-
puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-

10

15

20

25

30

35

40

45

50

55

60

65

2

fication, these implementations, or any other form that the
invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that is temporarily configured
to perform the task at a given time or a specific component
that is manufactured to perform the task. As used herein, the
term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. The invention is
described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the
invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

Stream locality delta compression is disclosed. Dedupli-
cating systems break an incoming data stream into a series of
data segments and test the system for the presence of each
data segment before storing it, in order to avoid storing it
multiple times. When used on enterprise systems where there
is a high degree of data redundancy, deduplication can reduce
the total amount of data stored by a large amount. After
redundant segment data has been removed from the storage
system by deduplication, there is still redundancy that can be
removed in the form of similar data segments with small
differences. Delta compression identifies a previously stored
data segment that is similar to a segment that is desired to be
stored and compresses it by storing the segment that is desired
to be stored as a reference to the previously stored segment
and storing a delta (or difference) from the previously stored
difference. In some embodiments, a segment that is desired to
be stored can also be stored as a delta from a segment that has
been previously stored as a reference and a delta. For seg-
ments that are very similar but not identical, no data reduction
would be achieved by deduplication alone, but a large amount
of data reduction is possible with delta compression.

In various embodiments, the balance of identity dedupli-
cation and delta compression are balanced in their usage in a
variety of configurations: identity deduplication always first
for a segment and then delta compression on segments that
are not found to be previously stored; identity deduplication
for a few selected segments and then delta compression on
segments that are not found to be previously stored and for a
next series of segments after the first segment; no identity
deduplication and delta compression on all segments for
which stream local segments are identified by one or more of
the following: a file name, a stream identifier, a stream source,
a client name, or any other appropriate way of identifying
local segments.

Some delta compression systems determine if an incoming
data segment is similar to a previously stored data segment by
creating a reduced version of the data segment referred to as
a sketch. The sketches of two data segments can be compared
to quickly determine whether the two segments are similar. In

US 9,069,785 B2

3

some systems, sketches can be compared to quickly deter-
mine a degree of similarity. An indexed database of sketches
of all stored data segments can be searched to locate the data
segment that is most similar to the incoming data segment and
perform optimal delta compression. However, performing
delta compression using a sketch index becomes cumber-
some on large systems due to the large size of the sketch
index. The sketch index may become too large to store in
low-latency memory, necessitating access to high-latency
memory every time delta compression is to be performed.

Stream locality delta compression replaces the master
sketch index with a limited index of sketches of stored data
segments. The database system maintains the limited index
with sketches believed likely to be similar to an incoming data
segment, and only searches the limited index. Segments are
identified as likely to be similar to an incoming data segment
by using stream locality. When an incoming data segment is
determined to be identical to a previously stored data seg-
ment, the database system loads a set of sketches of data
segments received or stored in proximity to the previously
stored data segment into the limited sketch index. When an
incoming data segment is not determined to be identical to a
previously stored data segment, its sketch is compared against
the sketches in the limited sketch index to locate a similar data
segment. If no similar data segments are located using the
limited sketch index, the data segment is stored without delta
compression.

In some embodiments, deduplication of segments (e.g.,
identity compression) is not performed and/or used in con-
junction with stream-locality delta compression in which
case the stream locality sketches are identified and loaded to
a sketch cache or index based at least in part on metadata
associated with a segment (e.g., a file name, a backup client
name, a system name associated with a backup, other non-
content based information, etc.).

A sketch is referred to as “found” in the limited sketch
index if it demonstrates an appropriate degree of similarity to
one or more other sketches in the limited sketch index (e.g.,
matching at least a predetermined threshold number of the
elements between two sketches, etc.). It is referred to as “not
found” in the sketch index if it does not demonstrate an
appropriate degree of similarity to one or more other sketches
in the limited sketch index (e.g., matching less than a prede-
termined threshold number of the elements between two
sketches, etc.). If a sketch is “found” in the limited sketch
index, it is likely that the data segment associated with the
sketch is similar to the one or more other data segments
associated with the one or more other sketches with which it
demonstrates an appropriate degree of similarity.

In some embodiments, a segment is similar to more than
one previously stored segment or portions thereof and the
more than one previously stored segments are used for the
encoding of the segment. For example, a segment’s first half
is similar to a first previously stored segment and a segment’s
second half is similar to a second previously stored segment;
the segment is stored by using a reference to the first and
second previously stored segments and indicators for which
portion(s) of the segments are used and in what manner they
are used to be able to reconstruct the segment (e.g., by indi-
cating a portion of the first segment matched to and the delta
from it and a portion of the second segment matched to and
the delta from it).

In some embodiments, a sketch system uses a cache (e.g.,
a sketch cache) to find similar segments. In some embodi-
ments, a sketch system uses one or more functions to charac-
terize a segment and can use the characteristics generated by

10

15

20

25

30

35

40

45

50

55

60

65

4

those functions to determine similarity and in some cases
degree or amount of similarity.

Some embodiments of stream locality delta compression
maintain a limited sketch index and a master sketch index.
The master sketch index is accessed only when the sketch of
the incoming data segment is not found in the limited sketch
index. This reduces the total number of accesses to the master
sketch index without reducing the total amount of delta com-
pression that is achievable.

Insome embodiments, stream locality delta compression is
used for data replication or transmission enabling more effi-
cient replication or transmission, where a source system and
a replica system are both able to reconstruct a given segment
or a source system is able to transmit a segment to a destina-
tion system more efficiently and the source and destination
system can both reconstruct a given segment. In some
embodiments, stream locality delta compression in combina-
tion with identity compression is used for data replication/
transmission, where a source system and a replica system are
both able to reconstruct a given segment or a source system is
able to transmit a segment to a destination system more effi-
ciently and the source and destination system can both recon-
struct a given segment.

FIG. 1 is a block diagram illustrating a system for delta
compression after identity deduplication. In the example
shown, network 100 connects one or more clients, repre-
sented in FIG. 1 by clients 102 and 104. A client may have a
local storage device in addition to local memory. For
example, client 102 has storage device 106, whereas client
104 does not have a local storage device. Network 100 also
connects to storage system 108. Storage system 108 stores
data either using internal storage device 110 or attached exter-
nal storage device 112.

Storage system 108 comprises deduplication system 114,
which performs segment deduplication on an incoming data
stream. Segment deduplication is assisted by identifier (ID)
index 116, which comprises ID data associated with each
segment used to store data and/or files by storage system 108,
along with a corresponding location in a data storage unit of
the segment (e.g., internal storage device 110, external stor-
age device 112, a storage system cache, a local memory, or
any other appropriate storage unit). Storage system 108 com-
prises delta compression system 118, which performs delta
compression on an incoming data stream. Delta compression
is assisted by sketch cache 120 (e.g., a sketch index), which
comprises sketch data associated with some or all of the
segments used to store data and/or files by storage system
108, along with the corresponding location in memory of the
segment. In some embodiments, sketch data comprises one or
more data characterizing a segment. In some embodiments,
one or more functions (e.g., hash functions) act on a segment
and a subset of the results of the functions acting on the
segment (e.g., a number of results, for example the ten lowest
results or the ten highest results) are selected as a sketch.

Network 100 comprises one or more of the following: a
local area network, a wide area network, a wired network, a
wireless network, the Internet, a fiber network, a storage area
network, or any other appropriate network enabling commu-
nication. Clients 102 and 104 may be in physical proximity or
may be physically remote from one another. Storage system
108 may be located in proximity to one, both, or neither of
clients 102 and 104.

In various embodiments, storage devices 106,110 and 112
comprise a single storage device such as a hard disk, a tape
drive, a semiconductor memory, a plurality of storage devices
such as a redundant array system (e.g., a redundant array of
independent disks (RAID)), a system for storage such as a

US 9,069,785 B2

5

library system or network attached storage system, or any
other appropriate storage device or system.

In various embodiments, storage system 108 comprises
one or more processors as part of one or more physical units
(e.g., computers or other hardware units).

In some embodiments, files or data stored on a client are
backed up on storage system 108. The files or data are broken
into segments by storage system 108. A mapping is stored
between the files or data and the segments. If an identical
segment is already stored by storage system 108, a pointer to
the segment is stored. If a similar segment is already stored by
storage system 108, a pointer to the similar previously stored
segment is stored as well as the difference between the similar
previously stored segment and the new segment to be stored.
The mapping along with the pointers, stored segments and
stored similar segments and differences from the similar seg-
ments can be used to reconstruct the original files or data.

FIG. 2 is a block diagram illustrating an embodiment of a
segment deduplication data storage system. In the example
shown, data stream or data block 200 is received by a data
storage system (e.g., storage system 108 of FIG. 1). Data
stream or data block 200 is sent from one or more clients (e.g.,
client 102 or client 104 of FIG. 1). Data stream or data block
200 is to be stored in storage device 210, representing a
storage device of a storage system (e.g., storage device 110 or
storage device 112 of storage system 108 of FIG. 1).

Data stream or data block 200 is segmented into segments
202, 204, 206 and 208. Data stream or data block 200 is
segmented by creating a plurality of segments from data
stream or data block 200 that can be used to reconstruct data
stream or data block 200. Segments, when used to reconstruct
data stream or data block 200, can be overlapping, non-
overlapping, or a combination of overlapping and non-over-
lapping. Segment boundaries are determined using file
boundaries, directory boundaries, byte counts, content-based
boundaries (e.g., when a hash of data in a window is equal to
a value), or any other appropriate method of determining a
boundary. Reconstruction of a data block, data stream, file, or
directory includes using one or more references to the one or
more segments that originally made up a data block, data
stream, file, or directory that was/were previously stored.

Storage device 210 is checked for existence of data seg-
ments to be stored (e.g., to see if a data segment is currently
already stored), such as data segments 202, 204, 206, and 208.
Data segments are stored if found to not exist within the
storage device. Existence checking is performed by generat-
ing a smaller ID data and searching a table of IDs (e.g., an ID
index such as ID index 116 of FIG. 1) corresponding to
segments currently stored for the ID of the data segment to be
stored. In some embodiments, existence checking is per-
formed by searching storage device 210 for the entire data
segment to be stored. ID data for a given data segment is
derived from the content of the data of the segment, and is
generated deterministically (e.g., a digital fingerprint, digital
signature, using a hash function, a checksum, a cryptographic
hash function, etc.). In various embodiments, ID data is not
derived from the content of the data, is generated randomly, or
any other appropriate manner for the storage system.

In the example shown, data segments such as segments
202, 206, and 208 are found not to exist in storage device 210
and are designated to be stored in storage device 210—for
example, segments 202, 204, and 206 are to be stored as data
segments 212, 214, and 216, respectively. Segment 204 is
found to exist within storage device 210, so a reference to 204
(not shown in FIG. 2) is stored in order to be able to recon-
struct data stream or data block 200.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 3 is a block diagram illustrating an embodiment of
data segmentation and storage. In the example shown, data
stream 300 is received by a data storage system (e.g., storage
system 108 of FIG. 1). Data stream 300 is sent from one or
more clients (e.g., client 102 or client 104 of FIG. 1). Data
stream 300 is to be stored in a storage device of a storage
system (e.g., storage device 110 or storage device 112 of FIG.
1). Data stream 300 is segmented into a plurality of data
segments, including data segment 302. In some embodi-
ments, segments are segmented by identifying segment
boundaries that are content-based—for example, a hash func-
tion is applied to values of data within a sliding window
through the data stream or block and when the hash function
is equal to a value (or equal to one of several values) then a
segment boundary is identified. In various embodiments, seg-
ment boundaries are identified using content based functions
operating on windows within a data stream or block that have
a minimum or maximum or other value or any other appro-
priate content based segmenting algorithm. In various
embodiments, segments comprise fixed-length segments,
variable length segments, overlapping segments, non-over-
lapping segments, segments with a minimum size, segments
with a maximum size, or any other appropriate segments. In
various embodiments, segments comprise files, groups of
files, directories, a portion of a file, a portion of a data stream
with one or more boundaries unrelated to file and/or directory
boundaries, or any other appropriate segment.

Data segment 302 is stored in the storage system as stored
data segment 306. Stored data segment 306 is stored as part of
data storage container 304. Data storage container stores one
or more data segments along with metadata associated with
the data segments. For example, metadata associated with
data segment 306 is stored as metadata 308. Metadata 308
comprises a data segment ID and a data segment sketch. In
various embodiments, a data segment ID comprises a deter-
ministic function of a data segment, a plurality of determin-
istic functions of a data segment, a hash function of a data
segment, a plurality of hash functions of a data segment,
random data, or any other appropriate data segment ID. In
various embodiments, a data segment sketch comprises one
or more deterministic functions of a data segment, one or
more hash functions of a data segment, one or more functions
that return the same value for similar data segments, one or
more functions that return similar values for similar data
segments, one or more functions that may return the same
value for similar data segments (e.g., a function that probably
or likely returns a same value for a similar data segment), one
or more functions that may return similar values for similar
data segments (e.g., a function that probably or likely returns
a similar value for a similar data segment), or any other
appropriate data segment sketch. In various embodiments,
sketch function values are determined to be similar using one
or more of the following methods: numeric difference, ham-
ming difference, locality-sensitive hashing, nearest-neigh-
bor-search, other statistical methods, or any other appropriate
methods of determining similarity.

In various embodiments, metadata (e.g., metadata 308)
comprises a data segment ID, a data segment sketch, a hash of
a data segment, an encrypted hash of a data segment, random
data, or any other appropriate metadata.

In some embodiments, metadata associated with a segment
is used to identify identical and/or similar data segments. In
some embodiments, stored metadata enables a faster identi-
fication of identical and/or similar data segments as an iden-
tifier (e.g., and ID) and/or sketch (e.g., a set of values char-
acterizing the data segment) do not need to be recomputed for
the evaluation of a given incoming data segment.

US 9,069,785 B2

7

FIG. 4 is a block diagram illustrating an embodiment of a
deduplication system. In some embodiments, the deduplica-
tion system of FIG. 4 implements deduplication system 114
of FIG. 1. In the example shown, a data segment to be stored
is received by network interface 400 and is passed to data
segment ID generator 402. Data segment ID generator 402
generates a data segment ID from the data segment and passes
the ID to deduplication filter 404. Deduplication filter 404
then queries ID index 406 for the data segment ID. If the data
segment ID is found in ID index 406, deduplication filter 404
does not allow the data segment to be stored. If the ID is not
found in ID index 406, deduplication filter 404 passes the
received data segment to a delta compression system via delta
compression system interface 408.

In some embodiments, in the event that a data segment is
not new, a reference is stored as well as other information
such that an incoming data stream or data block or file thereof
is able to be reconstructed using the previously stored data
segment.

In some embodiments, in the event that the data segment is
new, the data segment is stored as well as other information
such that an incoming data stream or data block or file thereof
is able to be reconstructed using the newly stored data seg-
ment.

FIG. 5 is a block diagram illustrating an embodiment of a
deduplication system with stream locality caching. In some
embodiments, the deduplication system of FIG. 5 performs
stream locality caching in a deduplication system (e.g. dedu-
plication system 114 of FIG. 1). In the example shown,
received data segment 500 undergoes deduplication and is
found to be already present in the data storage device. The
storage system creates data segment ID 502 from data seg-
ment 500 and queries ID index 504 (e.g. an ID index analo-
gous to ID index 116 of FIG. 1) for the data segment ID. Data
segment ID 502 is located in ID index 504, and a reference is
returned from ID index 504 indicating data segment 500 is
stored in data storage 506 as stored data segment 510. Stored
data segment 510 is stored in data container 508 (e.g. a data
container analogous to container 304 of FIG. 3) along with
data segments 514 and 518 and metadata segments 512, 516,
and 520, corresponding to the three stored data segments 510,
514 and 518, respectively. Data segment 514 and data seg-
ment 518 represent one or more data segments that are stream
local to data segment 510 (e.g., a data segment that was
received at a time similar or close to the time that data seg-
ment 510 was received, within a time window around the time
that data segment 510 was received, or close to data segment
510 within a data stream or a data block or local to where data
is stored (e.g., spatially on a storage medium or within a local
address space, or any other appropriate stream local criteria).
When received data segment 500 is identified as stored data
segment 510 in container 508, each metadata segment stored
in container 508 is loaded into metadata cache 522. The ID
part of each metadata segment is loaded into ID cache 524 and
the sketch part of each metadata segment is loaded into sketch
cache 526 (e.g. a sketch cache analogous to sketch cache 120
of FIG. 1). In some embodiments, if metadata cache 522 is
already full, a previously added metadata segment is removed
from the cache in order to make room for the new metadata
segment.

In some embodiments, identity deduplication is not per-
formed and stream local data segments or metadata associ-
ated with stream local segments are identified using one or
more of the following: a file name, a stream identifier, a
stream source, a client name, a system source name, or any
other appropriate manner of identifying stream local seg-
ments.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 6 is a block diagram illustrating an embodiment of a
delta compression system. In some embodiments, the delta
compression system of FIG. 6 implements delta compression
system 118 of FIG. 1. In the example shown, a data segment
to be stored is received by deduplication system interface 600
and is passed to data segment sketch generator 602. Data
segment sketch generator 602 generates a data segment
sketch from the data segment and passes the sketch to delta
compressor 604. Delta compressor 604 then queries sketch
system 606 for the data segment sketch. If the data segment
sketch is found to be similar or identical to one or more
previously stored segment sketches by sketch system 606,
delta compressor 604 performs delta compression on the
received data segment using the one or more data segments
associated with the one or more sketches found to be similar
oridentical by sketch system 606 as a base segment. The delta
compressed data segment is then passed to storage system
608 and stored. If the sketch is not found to be similar or
identical by sketch system 606, delta compressor 604 passes
the received data segment to storage system 608 to be stored
as a new data segment in the storage system.

FIG. 7 is a diagram illustrating an embodiment of delta
compression. In some embodiments, delta compression is
performed by delta compressor 604 of FIG. 6. In the example
shown, new data 700 is to be delta compressed. New data 700
comprises character sequence 702. Similar data 704 has been
identified previously to be similar to new data 700. Similar
data 704 comprises character sequence 706. In various
embodiments, similar data 704 is identified to be similar to
new data 700 using a sketch index, a sketch cache, database
searching, or by any other appropriate method. Encoded new
data 708 comprises reference 710 (e.g., a reference to a pre-
viously stored segment), character sequence references 714,
718, and 722 (e.g., a reference to a sequence of data from
within the previously stored segment identifying the subset of
the segment for example using offsets, lengths or any other
appropriate manner of identifying the subset), and character
sequences 712, 716, and 720 (e.g., a sequence of data—for
example, a string of characters, bytes, integers, whole num-
bers or other—that is to be inserted in between the reference
sequences). Reference 710 refers to similar data 704 and
indicates that the character sequence references refer to char-
acter sequences found in similar data 704. Character
sequence reference 714 indicates that characters 2-7 of simi-
lar data 704 are to be inserted in its position when reconstruct-
ing new data 700 from encoded new data 708; character
sequence reference 718 indicates that characters 10-19 of
similar data 704 are to be inserted in its position when recon-
structing new data 700 from encoded new data 708; and
character sequence reference 722 indicates that characters
23-26 of similar data 704 are to be inserted in its position
when reconstructing new data 700 from encoded new data
708. Character sequences 712, 716, and 720 are not found in
similar data 704, so they appear unchanged in encoded new
data 708 and remain when new data 700 is reconstructed from
encoded new data 708.

In some embodiments, the encoding comprises an indica-
tion of a set of data blocks in the second data segment not
present in the third previous data segment and an indication of
aset of data blocks in the third previous data segment. In some
embodiments, encoded new data sequences use other encod-
ing schemes that enable the indication of using portion(s) of
one or more previously stored segments and differences (e.g.,
similar to the character sequences above) to store a new data
segment. In various embodiments, the similar data and the

US 9,069,785 B2

9

new data comprise sets of characters, bytes, integers, whole
numbers, dates, and/or any other appropriate data or combi-
nation thereof.

In some embodiments, the delta encoding comprises an
ordered set of copy and insert instructions. New data 700 and
similar data 704 are first broken into regions. Region bound-
aries are determined using file boundaries, directory bound-
aries, byte counts, content-based boundaries (e.g., when a
hash of data in a window is equal to a value), or any other
appropriate method of determining a boundary. ID data is
computed for each region of new data 700 and similar data
704. 1D data for a given data region is derived from the content
of the data of the region and is generated deterministically
(e.g., a digital fingerprint, digital signature, using a hash
function, a checksum, a cryptographic hash function, etc.).
The IDs of regions of similar data 704 are kept in a searchable
list. The list of region IDs from similar data 704 is checked for
each region ID from new data 700. If a region ID from new
data 700 is not found in the list of region IDs from new data
700, an insert instruction is added to encoded new data 708,
followed by the corresponding data region from new data
700.

If a region ID from new data 700 is found in the list of
region IDs from new data 700, the corresponding data regions
are identical. The regions are then extended from the front and
back while checking to make sure that the regions still match.
When the largest possible matching region has been found, a
copy instruction is added to encoded new data 708 indicating
to copy the matching region from similar data 704 when
decoding encoded new data 708. If extending the ends of the
data region causes the region to overlap data that has been
included in encoded new data 708 as part of a previous copy
or insert instruction, the previous instruction is modified to
remove the overlap. The copy and insert instructions are
stored or transmitted when the entire new data 700 can be
reconstructed from the copies of similar data 704 and the
insertions.

In some embodiments, data from two or more similar seg-
ments is used to encode a new data segment. Reconstruction
of data from the two or more similar segment encoding is
achieved using copy references to region(s) of the two or
more similar segments and insertions.

FIG. 8 is a flow diagram illustrating an embodiment of a
process for stream locality delta compression. In some
embodiments, the process of FIG. 8 is used by storage system
108 of FIG. 1 to perform stream locality delta compression. In
the example shown, in 800, a data segment is received by the
data storage system. The data segment received in 800 is part
of'a received data stream or data block comprising a plurality
of'data segments. In 802, the data segment ID is computed by
the data storage system. The data segment ID is used to
determine whether the data segment is identical to a previous
data segment. In various embodiments, determining the data
segment ID uses one or more of the following: a fingerprint
function, a hash function, a cryptographic hash function, a
digital signature, or any other appropriate method for deter-
mining a data segment ID. In 804 the ID index (e.g., ID index
116 of FIG. 1) is checked for the ID computed in 802. In the
event that the ID computed in 802 is located in the ID index,
then the data segment is determined to be identical to a pre-
vious data segment, and control passes to 806. In 806, a
stream indicated locale of data segments is selected. Selecting
a stream indicated locale of data segments comprises select-
ing a set of data segments received or stored in proximity to
the previous data segment. Sketch data associated with data
segments in the stream indicated locale is added to the sketch
cache (e.g. sketch cache associated with a sketch system). In

20

30

40

45

55

10

808, the data segment ID is returned, and the process ends. In
some embodiments, a reference to the received data segment
is stored, enabling reconstruction of a data stream or data
block associated with the received data segment. In various
embodiments, a data stream or data block can include a plu-
rality of files, data structures, file structures, metadata infor-
mation, or any other appropriate data. In some embodiments,
the received data segment is not stored after it is determined to
be identical to a previous data segment.

In some embodiments, in the event that the ID computed is
identical to an ID in an ID index, a check is preformed to
determine if the received segment is identical to the previ-
ously stored segment (e.g., a byte by byte comparison of the
received segment and the previously stored segment).

In the event that the data segment ID is not found in the ID
index in 804, then the data segment is not determined to be
identical to a previous data segment, and control passes to
810. In 810, the data segment sketch is computed by the data
storage system. The data segment sketch is used to determine
whether the data segment is similar to a data segment in the
locale. In various embodiments, a sketch system comprises a
sketch index which associates data segment sketches with
data segment IDs, a sketch cache which associates a subset of
data segment sketches with data segment IDs (e.g., sketches
associated with segments that are of a locale—for example,
those that are proximal in time or space from an original data
stream/block or from a stored perspective on a storage
medium for example close physically or in terms of logical
addressability), or any other appropriate system for identify-
ing similar sketches. In various embodiments, a sketch cache
is comprised of data-stream locality information, identity
matching information, storage sub-system information, tem-
poral locality, spatial locality, access patterns, historical pat-
terns, or any other appropriate information. In 812, the sketch
cache is checked for the sketch computed in 810. In the event
that the sketch computed in 810 is not found in the sketch
cache, then the data segment is not determined to be similar to
adata segment in the locale, and control passes to 814. In 814,
the data segment is stored, the ID associated with the data
segment is returned, and the process ends. In various embodi-
ments, the data segment is compressed, transmitted, repli-
cated, or processed in any appropriate way. In the event that
the data segment sketch computed in 810 is found or a portion
thereof in the sketch cache in 812, then the data segment is
similar to a data segment in the locale, and control passes to
816.

In 816, the data segment identified from the sketch cache to
be similar to the received data segment is located in the data
storage system. In 818, an encoding of the received data
segment is computed. In various embodiments, the delta com-
pression encoding (e.g., delta compression of FIG. 7) is based
atleast in part on the similar data segment and comprises a set
of data blocks in the first data segment not present in the data
segment in the locale and a set of references to subsets of data
in the data segment in the locale (e.g., data offsets into the
similar data segment, a data offset and length of sequence, or
any other appropriate encoding). In some embodiments, a
data segment is encoded based on a previously stored data
segment which itself is encoded based on a previously stored
data segment; a delta encoding of a delta encoded segment. In
some embodiments, one or more data segments are identified
to be similar to the received data segment in addition to the
similar data segment identified in 816. In some embodiments,
the delta compression encoding is based at least in part on the
similar data segment identified in 816 and the one or more
additional similar data segments. In various embodiments,
the one or more data segments identified or selected to be

US 9,069,785 B2

11

similar to the received data segment are identified or selected
based at least in part on one or more of the following: tem-
porallocality (e.g., a segment received at a time similar to the
time another segment is received), spatial locality (e.g., a
segment stored in a location similar or close to another seg-
ment), ease of access (e.g., a segment is readily accessed as
compared to another segment, located at an access point,
located at a memory boundary, etc.), expected compression
(e.g., the segment is expected to compress to a desirable size,
below a threshold size, etc.), frequency of selection for other
compressed segments (e.g., the segment is used as a reference
to store a plurality of other segments, where the plurality is
above a threshold size or is a maximum or in a “top ten” or
other list, etc.), or based on any other appropriate criteria.

In 820, the encoding is checked to see if it is smaller than
the received data segment. If it is determined that the encod-
ing is not smaller than the received data segment, control
passes to 822. In 822, the data segment is stored in the data-
base along with data segment metadata, the ID associated
with the data segment is returned, and the process ends. In
some embodiments, if the encoding is not smaller than the
received data segment, the encoding is stored in place of or in
addition to the received data segment. In some embodiments,
if the encoding is not smaller than the received data segment,
the encoding is transmitted or replicated in place of or in
addition to the received data segment.

If it is determined in 820 that the encoding is smaller than
the received data segment, control passes to 824. In 824, the
encoding is stored. In various embodiments, the encoding is
compressed (e.g., using Huffman coding, Lempel-Ziv cod-
ing, Lempel-Ziv-Welch coding, etc.), transmitted (e.g., trans-
mitted between two systems where a reduction in transmitted
data is desired and the deduplicated and delta compressed
segments enable a reduced amount of data transmitted
between two systems), replicated (e.g., stored on a replica
system that replicates data stored on the storage system), or
processed in any other appropriate way. In 826, the received
data segment ID and similar data segment ID are returned,
and the process ends. In some embodiments, the similar data
segment ID is stored as part of the encoding and not returned.

In some embodiments, the decision for 820 is based on a
percentage reduction of the storage required for the segment.
For example, if the encoded data segment is bigger than the
80% of the size of the data segment, then the data segment is
stored as itself and not as a reference to a previously stored
segment and a difference (e.g., an encoded data segment). In
some embodiments, the decision for 820 is based at least in
part on the balance between the computation required for
reconstruction of the encoded segment versus the space uti-
lized for storing a segment and/or the encoded segment.

FIG. 9 is a flow diagram illustrating an embodiment of a
process for selecting a stream indicated locale of data seg-
ments. In some embodiments, the process of FIG. 9 imple-
ments 806 of FIG. 8. In the example shown, in 900, the
metadata cache is checked to see if it is full. If it is determined
that the metadata cache is full, control passes to 902. In 902,
the least used group of metadata is removed from the meta-
data cache. Removing a previously inserted group of meta-
data (e.g., the least used) from the metadata cache corre-
sponds to removing the least used group of segments from the
locale. Alternative policies for removing groups of metadata
include removing the oldest, newest, other statistically based
selection methods, or selecting groups of meta data based on
the results of a function computation. Control then passes to
904. If it is determined in 900 that the metadata cache is not
full, control passes directly to 904. In 904, the data segment
locality is added to the metadata cache.

10

20

25

30

35

40

45

50

55

60

65

12

FIG. 10 is a block diagram illustrating an embodiment of a
system for transmitting or replicating segments using stream
locality based delta compression. In the example shown,
originator system 1000 includes delta compression system
1006. Delta compression system 1006 includes a stream
locality cache that stores similarity measures (e.g., sketches)
for one or more localities that include metrics for identifying
similar segments. In various embodiments, localities are
identified by a previous similar segment match, a previous
identical segment match, a file name, a client name, a meta-
data associated with a data stream or data block, or any other
appropriate locality identifier. Originator system 1000 is
coupled to network 1002. Replica or destination system 1004
is coupled to network 1002. Originator system 1000 and
replica or destination system 1004 are able to communicate
via network 1002. Replica or destination system 1004 repli-
cates data stored on originator system 1000 or receives trans-
missions of segments from originator system 1000. Replica
or destination system 1004 includes delta compression sys-
tem 1008. Delta compression system 1008 includes a stream
locality cache that stores similarity measures (e.g., sketches)
for one or more localities that include metrics for identifying
similar segments.

FIGS. 11A and 11B are flow diagrams each illustrating an
embodiment of a process for replicating a segment using
stream locality based delta compression. In some embodi-
ments, the process of FIGS. 11A and 11B is executed on the
system (s) of FIG. 10. In the example shown, in 1100 a data
segment on an originator (e.g., an originator system—for
example, originator system 1000) is selected for replication.
In 1102, the data segment ID is transmitted from originator to
replica. In 1104, it is determined whether a data segment ID is
in a replica ID index. For example, a replica system performs
an identity compression by determining whether the data
segment has been previously stored using an index of previ-
ously stored or transmitted data segment identifiers (e.g., an
index of fingerprints of segments already stored or transmit-
ted). In the event that the data segment ID is in the replica ID
index, in 1106 a stream locale of data segments is selected,
and in 1108 the replica stores the data segment ID. For
example, the data segment is stored by the replica by storing
areference to the data segment (e.g., the data segment ID) and
the data segments “local” to the identified data segment are
selected to be putin a cache. In the event that the data segment
ID is not in the replica ID index, then in 1110 the originator
transmits the data segment sketch.

In 1112, it is determined whether the data segment sketch
is in the replica sketch cache. For example, the data segment
sketch values are matched against values in the sketch cache.
The sketch cache stores sketches of likely candidate localities
(e.g., sketches associated with segments local to stored seg-
ments that have recently found to have been identical to input
data stream or data block segments). In the event that a data
segment sketch is not in the replica sketch cache, in 1114 the
originator transmits the data segment to replica, and in 1116
the replica stores the data segment. In the event that the data
segment sketch is in the replica sketch cache, in 1118 the
replica sends segment ID for similar segment to originator.

In 1120, it is determined whether the originator has the
segment referenced by the ID. In the event that the originator
does not have the segment referenced by the ID, control
passes to 1114. In the event that the originator does have the
segment reference by the ID, in 1122 of FIG. 11B the origi-
nator encodes the segment relative to the referenced segment.
In 1124, the originator transmits the encoded segment to the
replica. In 1126, the replica decodes the segment and stores
the data segment. In some embodiments, the replica stores the

US 9,069,785 B2

13

data segment encoded (e.g., the difference from the reference
data segment and a reference to the referenced data segment).
Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

What is claimed is:

1. A system for processing data, comprising:

a stream locality system having a processor to determine a
stream indicated locale, the locale including a selection
of a plurality of previously stored data segments satis-
fying a locality criterion with respect to a portion of a
stream currently being processed for storage, wherein
sketches for the plurality of previously stored data seg-
ments satisfying the locality criterion are loaded into a
limited sketch index from a sketch cache; and

a delta compression system having a processor to deter-
mine based at least in part on the limited sketch index
that a first data segment included in the portion of the
stream currently being processed for storage is similar to
a similar data segment among the data segments in the
locale by satistying a similarity criterion,

wherein the plurality of previously stored data segments
satisfying the locality criterion correspond to a subset of
previously stored data segments loaded in the sketch
cache.

2. The system of claim 1, wherein the stream locality

system receives a data stream or data block.

3. The system of claim 2, wherein the stream locality
system breaks the data stream or data block into a plurality of
data segments.

4. A system of claim 1, wherein determining the stream
indicated locale comprises selecting a set of data segments
received or stored in proximity to the previously stored data
segment.

5. The system of claim 1, wherein the delta compression
system further comprises computing an encoding of the first
data segment.

6. The system of claim 5, wherein the delta compression
system further comprises storing the encoding of the first data
segment.

7. The system of claim 5, wherein the delta compression
system further comprises transmitting the encoding of the
first data segment.

8. The system of claim 5, wherein the encoding is based at
least in part on the data segment in the locale.

9. The system of claim 5, wherein the encoding comprises
an indication of a set of data blocks in the first data segment
not present in the data segment in the locale and an indication
of a set of data blocks in the data segment in the locale.

10. The system of claim 5, wherein the delta compression
system further comprises determining whether the encoding
is smaller than the first data segment.

11. The system of claim 1, wherein the first data segment is
determined to be similar to the similar data segment in the
locale using a sketch function.

12. The system of claim 11, wherein the sketch function
comprises one or more functions that can return a similar
value for similar data segments.

13. The system of claim 12, wherein sketch function values
are determined to be similar based on one or more of the
following methods: numeric difference, hamming distance,
locality-sensitive-hashing, or nearest-neighbor-search.

14. The system of claim 1, wherein the first data segment is
similar to one or more other data segments in the previous

10

15

20

25

30

35

40

45

50

55

60

65

14

stream indicated locale in addition to the data segment in the
previous stream indicated locale.

15. The system of claim 14, wherein the delta compression
system further comprises computing an encoding of the first
data segment.

16. The system of claim 15, wherein the encoding is based
at least in part on the data segment in the previous stream
indicated locale and the one or more other data segments.

17. The system of claim 14, wherein the one or more other
data segments and the data segment in the previous stream
indicated locale are identified based at least in part on one or
more of the following: temporal locality, spatial locality, ease
of access, expected compression, or frequency of selection
for other compressed segments.

18. A method for processing data, comprising:

using a processor to determine a stream indicated locale,

the locale including a selection of a plurality of previ-
ously stored data segments satisfying a locality criterion
with respect to a portion of a stream currently being
processed for storage,

using the processor to load sketches for the plurality of

previously stored data segments satisfying the locality
criterion into a limited sketch index from a sketch cache;
and

using the processor to determine based at least in part on

the limited sketch index that a first data segment
included in the portion of the stream currently being
processed for storage is similar to a similar data segment
among the data segments in the locale by satistying a
similarity criterion,

wherein the plurality of previously stored data segments

satisfying the locality criterion correspond to a subset of
previously stored data segments loaded in the sketch
cache.

19. The method of claim 18, wherein determining the
stream indicated locale comprises selecting a set of data seg-
ments received or stored in proximity to the previously stored
data segment.

20. The method of claim 18, further comprising encoding
the first segment based at least in part on the data segment in
the locale.

21. The method of claim 20, wherein the encoding com-
prises an indication of a set of data blocks in the first data
segment not present in the data segment in the locale and an
indication of a set of data blocks in the data segment in the
locale.

22. The method of claim 20, further comprising determin-
ing whether the encoding is smaller than the first data seg-
ment.

23. The method of claim 18, wherein the first data segment
is determined to be similar to the similar data segment in the
locale using a sketch function.

24. A computer program product for processing data, the
computer program product being embodied in a non-transi-
tory computer readable storage medium and comprising com-
puter instructions for:

determining a stream indicated locale, the locale including

a selection of a plurality of previously stored data seg-
ments satisfying a locality criterion with respect to a
portion of a stream currently being processed for stor-
age,

loading sketches for the plurality of previously stored data

segments satisfying the locality criterion into a limited
sketch index from a sketch cache; and

determining based at least in part on the limited sketch

index that a first data segment included in the portion of
the stream currently being processed for storage is simi-

US 9,069,785 B2
15 16

lar to a similar data segment among the data segments in
the locale by satistying a similarity criterion,

wherein the plurality of previously stored data segments
satisfying the locality criterion correspond to a subset of
previously stored data segments loaded in the sketch 5
cache.

